Looking forward: Insurance and catastrophe modeling

Joint Informational Hearing: California Assembly Insurance Committee and Assembly Emergency Management Committee

Nancy P. Watkins, FCAS, MAAA Principal & Consulting Actuary

14 June 2023

California catastrophe ratemaking

Total premium for wildfire must be based on experience and not catastrophe models

According to the California Code of Regulations (2644.5):

- Catastrophe losses are based on a multi-year long-term average of catastrophe claims
- Minimum 20-year average is required for homeowners multiple peril fire

CA formula:

Catastrophe load =

\$ insured losses of catastrophe claims

÷ \$ insured losses of non-catastrophe claims

CALIFORNIA REPUBLIC

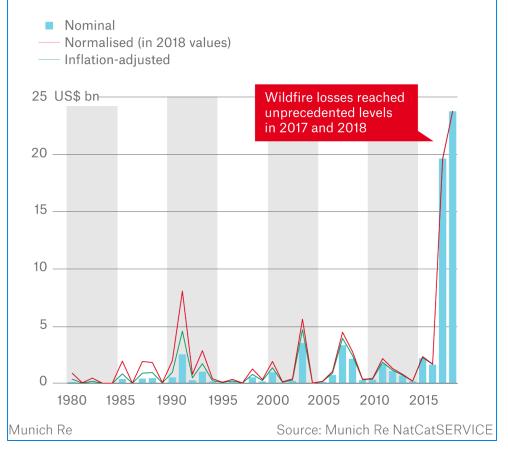
CA formula once represented the best available science

Very simple model that relies on the past as an accurate way of predicting the future

CA formula could be actuarially sound if certain conditions are met...

- Catastrophic risk is consistent over the long term
- Full spectrum of risk is captured by 20-year history
- Risk is sufficiently measured by insured losses from events
- Increase in cat risk corresponds to increase in non-cat risk

...but wildfire does not meet these conditions


- Wildfire risk is not consistent over the long term
- Wildfire risk cannot be adequately captured in 20-year history
- Insured losses do not sufficiently measure wildfire risk
- Rise in wildfire risk does not correspond to rise in non-cat risk

Historical experience is not sufficient for wildfire ratemaking

- Prior to 2017, 1991 Oakland Hills Fire was most destructive event in state history
- Extreme drought conditions occurred from 2012-2016, followed by unprecedented losses in 2017 and 2018.
- If past experience is assumed to be the best basis to predict the future, how could this happen?

California events fuel U.S. wildfire losses Overall losses 1980–2018

Backwards-looking formula generated affordability shocks

Adding 2017-2018 losses to history drastically increased CA rate indications beginning in 2019

Year	Non-Cat Loss	Cat Loss	Cat/Non-Cat Ratio
1997	101	5	5%
1998	123	14	11%
1999	131	7	5%
2000	179	-0	0%
2001	216	1	1%
2002	236	8	3%
2003	159	78	49%
2004	183	5	3%
2005	197	12	6%
2006	230	7	3%
2007	251	120	48%
2008	320	75	23%
2009	334	3	1%
2010	332	3	1%
2011	396	17	4%
2012	345	2	1%
2013	386	0	0%
2014	350	22	6%
2015	394	145	37%
2016	403	14	4%
2017	478	1,243	260%
2018	390	2,395	614%

Selected Catastrophe Load	
1997-2016 CAT Load: 11%	
1998-2017 CAT Load: $23\% \longrightarrow +109\%$	+382% indicated rate increase for cat perils from 2016 to 2018
1999-2018 CAT Load: $53\% \longrightarrow +130\%$	+38% indicated increase to total premium

Actual averages based on filings from 3 of the top 10 California insurers

CDI formula does not reflect the underlying risk and is largely random

For insurers, shedding risks in the WUI helps avoid the shock that goes along with this randomness.

Growing in the WUI

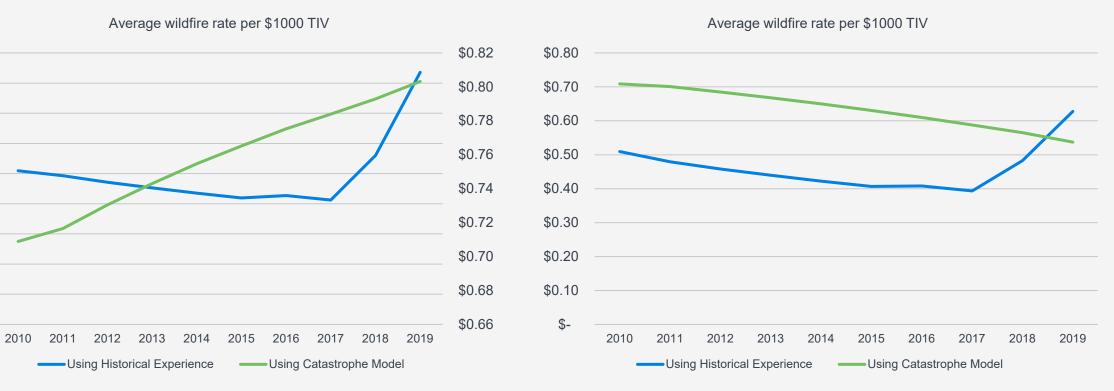
\$0.90

\$0.80

\$0.70

\$0.60

\$0.50


\$0.40

\$0.30

\$0.20

\$0.10

\$-

Shrinking in the WUI

https://www.milliman.com/-/media/milliman/pdfs/2022-articles/10-19-22_pci-pifc-cdi-summary.ashx

C Milliman

California's catastrophe load formula is an outlier

California is in the minority of states prohibiting catastrophe models for ratemaking

- For many years, only two other states had this prohibition -- both recently reversed
- More states moving towards explicit model acceptance, especially for underserved markets
- California is the only state that requires a backward-looking formula for homeowners' catastrophe load

CDI's treatment of catastrophe models is inconsistent

- For earthquake and fire following earthquake perils, CDI generally allows catastrophe models
- CDI appears to be allowing catastrophe models for private flood insurance
- CDI allows wildfire cat models for mitigation credits and other risk classifications

Catastrophe models are gaining in usage outside the insurance industry

- FEMA and disaster planners
- Lenders and financial regulators
- Municipal bond rating agencies
- Real estate investors

C Milliman

What happens when the CA formula fails?

Backward-looking approach left us blind to the risk up ahead

What happens when the CA formula fails?

Backward-looking approach left us blind to the risk up ahead

A Axios

State Farm, Allstate to stop insuring new homeowners in California due to climate change

Decisions by two major insurers to stop offering new homeowner's policies in California highlight the growing portion of America that's...

2 days ago

ABC30

Home insurance companies halting new policies in California due to wildfires

FRESNO COUNTY, Calif. (KFSN) -- Large home insurance providers are no longer providing new home insurance policies for customers in...

Pasadena Weekly

Property insurance further restricted across California | News | pasadenaweekly.com

State Farm General Insurance Company will no longer accept new applications for homeowners insurance, including personal or business lines...

1 hour ago

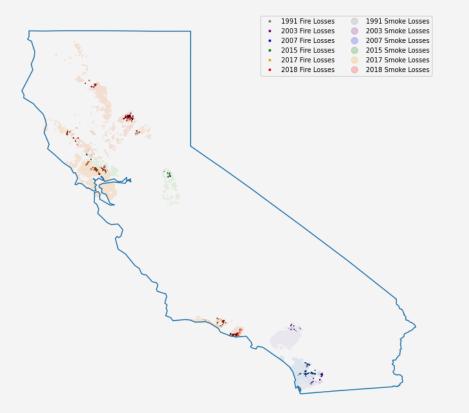
TIME

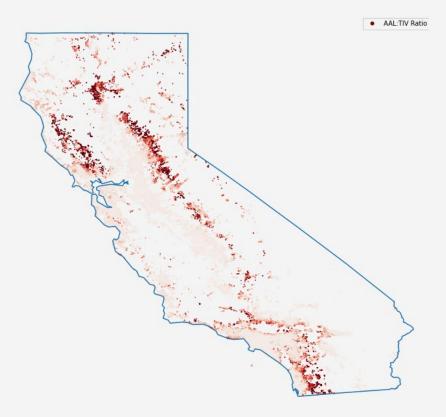
Insurance Industry Needs to Evolve to Address Climate Change

State Farm and Allstate have stopped writing new property insurance policies in California. Still, insurance can help climate adaptation.

1 day ago

Catastrophe models are built to handle low-frequency, high-severity events


Insurers use the advanced scientific tools available to measure and manage otherwise uninsurable risks


Comparison of historical fire footprints and model losses

History is just a small window looking into the total risk

Historical fire footprints

Model losses

Future benefits for consumers

Integrating catastrophe models into ratemaking process helps promote a sustainable insurance market

Increasing availability through:

- Matching price to risk to promote insurer interest in higher risk areas
- Reducing FAIR Plan exposure that threatens insurers' appetite to write even in less risky areas

Increase affordability through:

- Promoting price predictability and stability
- Fostering competition
- Encouraging effective risk reduction for existing homes and communities
- Disincentivizing future development in high-risk areas

Increasing reliability through:

- Protecting insurer solvency
- Informing communication of risk drivers for increased transparency
- Planning for climate change

We are not in Kansas anymore

13 of California's 20 most destructive wildfires have occurred since 2017

FIRE NAME (CAUSE)	DATE	COUNTY	ACRES	STRUCTURES	DEATHS
1 CAMP (Powerlines)	November 2018	Butte	153,336	18,804	85
2 TUBBS (Electrical)	October 2017	Napa & Sonoma	36,807	5,636	22
3 TUNNEL - Oakland Hills (Rekindle)	October 1991	Alameda	1,600	2,900	25
4 CEDAR (Human Related)	October 2003	San Diego	273,246	2,820	15
5 NORTH COMPLEX (Lightning)	August, 2020	Butte, Plumas, & Yuba	318,935	2,352	15
6 VALLEY (Electrical)	September 2015	Lake, Napa & Sonoma	76,067	1,958	4
7 WITCH (Powerlines)	October 2007	San Diego	197,990	1,650	2
8 WOOLSEY (Electrical)	November 2018	Ventura	96,949	1,643	3
9 CARR (Human Related)	July 2018	Shasta County, Trinity	229,651	1,614	8
10 GLASS (Undetermined)	September 2020	Napa & Sonoma	67,484	1,520	0
11 LNU LIGHTNING COMPLEX 11 (Lightning/Arson)	August 2020	Napa, Solano, Sonoma, Yolo, Lake, & Colusa	363,220	1,491	6
12 CZU LIGHTNING COMPLEX (Lightning)	August 2020	Santa Cruz, San Mateo	86,509	1,490	1
13 NUNS (Powerline)	October 2017	Sonoma	44,573	1,355	3
14 DIXIE (Under Investigation)*	July 2021	Butte, Plumas, Lassen, & Tehama	963,309	1,311	1
15 THOMAS (Powerline)	December 2017	Ventura & Santa Barbara	281,893	1,063	2
16 CALDOR (Human Related)	September 2021	Alpine, Amador, & El Dorado	221,835	1,005	1
17 OLD (Human Related)	October 2003	San Bernardino	91,281	1,003	6
18 BUTTE (Powerlines)	September 2015	Amador & Calaveras	70,868	965	2
19 JONES (Undetermined)	October 1999	Shasta	26,200	954	1
20 AUGUST COMPLEX (Lightning)	August 2020	Mendocino, Humboldt, Trinity, Tehama, Glenn, Lake, & Colusa	1,032,648	935	1

Top 20 Most Destructive California Wildfires

Increases in wildfire risk will continue to exacerbate issues of insurance availability and affordability.

California stakeholders need to work together to better understand the risk and ways to reduce it.

We will need to rely on the best available science to move forward.

https://www.fire.ca.gov/our-impact/statistics accessed June 2023

Call

10/24/2022

"Structures" include homes, outbuildings (barns, garages, sheds, etc) and commercial properties destroyed.

This list does not include fire jurisdiction. These are the Top 20 regardless of whether they were state, federal, or local responsibility. *Numbers not final

Questions or comments?

Nancy Watkins, FCAS, MAAA Principal & Consulting Actuary (415) 394 3733 nancy.watkins@milliman.com

Appendix: Addressing common objections

Won't catastrophe models result in drastically higher premiums?

Won't catastrophe models result in drastically higher premiums?

Not necessarily

Drastic increases already happened using the CA formula. Model premiums might have been higher or lower. In other markets, catastrophe models have often resulted in lower premiums.

If different models don't agree, doesn't that mean they must be wrong?

If different models don't agree, doesn't that mean they must be wrong?

No

Disagreement represents multiple views of risk, creating more opportunities for affordable premiums. Wildfire models are evolving quickly and will improve with usage.

Aren't models black boxes that insurers can manipulate?

Aren't models black boxes that insurers can manipulate?

No

Models are not conducive to manipulation, although it requires expertise to interpret them. Modelers need to protect intellectual property, but they release information to the public on the drivers of risk.

Won't allowing catastrophe models undermine appropriate regulatory oversight?

Won't allowing catastrophe models undermine appropriate regulatory oversight?

No

Most states allow the use of cat models in ratemaking and some have implemented comprehensive oversight. A clearinghouse would allow CDI to join forces with other states to secure rigorous expert reviews.

Appendix: Regulatory challenges and potential solution

Background

Facilitating the use of catastrophe models in ratemaking to aid insurance availability, affordability

Ľ[,] Č

Challenge

How can regulators encourage and allow the use of catastrophe models, while maintaining appropriate regulatory oversight to ensure that rates are not excessive, inadequate, or unfairly discriminatory?

 Historical data from natural catastrophes is sparse and volatile, so past experience may not be a sufficient basis for accurate expectations of the future

Catastrophe simulation models have been widely adopted in private insurance, along with other areas such as emergency management

Catastrophe ratemaking regulation can have an effect on insurance affordability and availability

Current regulatory framework presents challenges to regulators, modelers, and insurers

C Milliman

Catastrophe model treatment varies widely among states

Prohibition of the use of catastrophe models for some or all purposes in establishing rates

Silent on the use of catastrophe models

눈날

Regulations piggybacking on other state reviews

Questionnaires and case-by-case model validation

Statewide body for scientific and technical review of catastrophe models

Challenges for regulators

Lack of appropriate expertise and/or resources to review models comprehensively Balancing needs of affordability, availability, insurance company solvency and consumer protection Inability to protect proprietary information of modelers and insurers

Proposal for catastrophe model clearinghouse

Multi-disciplinary panel to develop standards, select expert reviewers and manage model review process

Voluntary participation by states who wish to rely on expert model review

Third-party experts chosen by panel to perform confidential reviews

- Consistent professional review team for all models for a given peril
- Expert team would depend on nature of model but could include engineers, scientists, technologists, actuaries, claims experts, other professionals

Potential clearinghouse deliverables

- Standardized modeler disclosures
- Market basket output for state level regulatory analysis, comparison
- Third-party expert reports reviewing model compliance with standards
- Model acceptability for specific purposes

C Milliman

Key questions to be addressed

Ownership/structure:

What organizational/control structure will be mutually acceptable to regulators, insurers and cat modelers?

Needs to be able to administer an independent, centralized, rigorous review process

Funding:

How should costs of the clearinghouse reviews be shared among the parties that benefit (states, insurers, cat modelers, others)?

Trade secret protection:

How will the clearinghouse ensure intellectual property and proprietary information of modelers and insurers will be protected?

Critical elements

Minimum requirements for success

Widespread buy-in among regulators, insurers, modelers Cost and time efficiency

Flexibility to allow innovation and multiple perspectives

Future of catastrophe models

C Milliman

Appendix: Insuring the uninsurable – Florida hurricane and flood

Florida hurricane

Situation

- Hurricane Andrew (1992) caused over \$27 billion in losses
- Insurers learned how seriously they had underestimated exposure
- Losses could have been much higher

Insurer insolvencies

Impact

- Spike in reinsurance costs
- Cancellation and nonrenewal of policies
- Requests for large rate increases
- Availability and affordability crisis
- Deterioration in real estate market

 FRPCJUA established in 1992, 1M policies by 1994

Response

- FCHLPM created in 1995 to review/approve hurricane models
- Strengthened building codes
- Insurance mitigation discounts based on catastrophe models incentivized home hardening

Results

Reduction of risk in state

- Reduced premiums
- More capital, formation of new domestics
- More price and product competition
- Better consumer choices
- Stabilization of real estate market as insurance availability and affordability improved

C Milliman

Florida flood

011	- 4 •
SILU	ation

- NFIP \$18 billion in debt in 2012
- Biggert Waters (2012) required flood premiums to reflect the true cost of risk
- Subsidies and discounts on flood insurance premiums would be phased out
- Significant flood rate increases for many NFIP policyholders

 Rate increases shocked the real estate market

Impact

- Florida particularly impacted, with over 2 million NFIP policies
- Biggert Waters partially rolled back in 2014
- Concerns over NFIP affordability remained

FL SB 542 passed in 2014

Response

- Provided private flood alternative to the NFIP
- Allowed additional freedom in flood rating
- Allowed open use of catastrophe models until FCHLPM developed review standards
- Freedom to experiment for multiple years, extended to 2025

Results

- Rapid growth in private flood insurance writers, currently:
- 33 Primary
- 6 Excess of NFIP
- 2 Excess & Surplus
- Generally underwritten and/or rated based on cat models
- Increased availability, consumer choice
- Better coverage options
- Often more affordable than NFIP
- Closing protection gap

C Milliman